
What Smalltalk Rightfully Should Have Been

Michael T. Watters
mike@mwatters.net

March 7, 2014

watters 1

Contents

1 Information Overload 2
1.1 What’s All This Got to Do With Smalltalk? 2
1.2 Encapsulation and Abstraction . 2

1.2.1 Messages . 2
1.3 Things with Attributes . 2

1.3.1 Objects . 2
1.4 Mental Models & Kinds of Things . 3

1.4.1 Classes . 3
1.5 A Word on Wooly Mammoths . 3

2 What Smalltalk Provides 4
2.1 Self-Contained Environments for Data and Code 4
2.2 That Sounds Familiar! . 4

3 A Series of Unfortunate Events 8
3.1 Could Smalltalk Have Been a Successful Operating System? 8
3.2 A Format for “Live Documents”? . 8
3.3 A Language for the Web? . 8

4 What Might Have Been 9

watters 2

1 Information Overload

From the moment we’re born, we instinctively struggle to understand what’s happening
around us. We quickly develop skills to recognize and react to stimuli delivered from our
sensory organs to our brains, an ongoing process which shapes the way we perceive and
respond to the information in our environment.

1.1 What’s All This Got to Do With Smalltalk?

Smalltalk is a computer programming language still in use today; it provides a useful system
and method for organizing information. It was one of the earliest implementations of the
Object Oriented Programming paradigm, and its concepts and features inspired a great
many languages and programming environments which followed.

1.2 Encapsulation and Abstraction

Encapsulation and abstraction are the keys to usefully organizing information. As I write
these words, I’m not thinking about the specific appendages of my body which are reacting
to the neurotransmitter-driven electrical impulses originating in my brain, or the keyboard’s
electronic circuitry which translates the mechanical switch activations caused by my finger
movements into electrical signals to be interpreted by my computer, or the operating system
on my computer which receives those signals and delivers their assigned meanings to the
programs with which I’m interacting, or how the CPU is updating locations in memory
according to the various programs it’s executing.

I’m thinking to myself: “I’m writing a paper using a computer”, as that is a meaningful
way of encapsulating my mental model of what I’m doing in a format which is convenient to
remember and for communicating to others. The specific form of this activity is essentially
a series of messages from my brain to my computer.

1.2.1 Messages

The quintessential feature of Smalltalk is the sending of Messages. A Message is a request
for interaction between different parts of the system, and sending Messages is the only
way for disparate components (Objects) to interact. This is a natural way to enhance
modularity by enforcing separation between components.

1.3 Things with Attributes

An object in the real world is a thing with certain attributes and observed behaviors. We
can change some of an object’s attributes by doing things to it, and can learn about it by
observing it and its interactions with other objects. We can categorize it and group it with
other similar things.

1.3.1 Objects

In Smalltalk an Object is the unit of encapsulation for data and behavior. It may interact
with other Objects by sending and receiving Messages. Data is private to an Object: the

watters 3

only way to modify it is for the Object itself to do so in response to a Message from another
Object.

1.4 Mental Models & Kinds of Things

When we think about a particular thing, our minds are operating on the mental models
we’ve built to represent the various aspects of that kind of thing. We naturally group similar
things together based on our observations and generalize abstractions which can be applied
to group members, which saves time and mental energy.

When we see a tree, most of us won’t consider or memorize every detail for future
reference. We might make a note of any distinguishing features while thinking to ourselves
“it’s a tree”, applying our pre-existing mental model corresponding to “tree-like things” to
our perception of it.

These mental models allow us to make decisions when faced with incomplete informa-
tion. Seeing a specific object which looks like a typical tree, we can quickly make useful
assumptions about it, such as: it obeys the known laws of physics; it’s alive; it’s not dan-
gerous; it can’t move around or talk to us; and we can’t eat it – because these things apply
to all other objects we’ve classified as “trees” before.

1.4.1 Classes

To help manage the various behaviors and properties that Objects should have, Smalltalk
defines a hierarchy of Classes. A Class defines the set of data which a member of the
class may contain, and the set of behaviors (responses to Messages) which members are
known to exhibit. All Objects are instances (members) of Classes, and their behavior is
fully determined by their Class. Descendant Classes inherit data and behavior from their
ancestors.

1.5 A Word on Wooly Mammoths

While not a perfect analogue, this hierarchical method of modeling data and behavior is
similar to how we cope with information about things in the real world.

Consider a model involving prehistoric humans and wooly mammoths. Both are kinds
of creatures which can wield pointy objects. Our limited understanding of living creatures
indicates that one creature is hostile to another if it’s wielding a pointy object and is not of
the same species – potentially very helpful information when deciding whether to run away!

As expressed in the source code of Figure 1, our initial implementation of the model
shows that a wooly mammoth is always hostile to a human (because it has tusks and a
human is not a kind of wooly mammoth), so a human should always run away. A wooly
mammoth should run away from a human if the human is carrying a sharp spear or other
kind of pointy object.

While the model is useful in that it allows unrelated creatures to reason about each
other using incomplete information, it fails to account for various details. For example, a
human carrying a rope net in a hunting party might not want to run away, and a mammoth
might not want to run away from a single human carrying a pointy object, or if it’s with a
pack of fellow mammoths.

watters 4

As we learn more about a particular problem domain, we can update our class hierarchy
appropriately to capture new information. For example, we could add an appropriate
ancestor class to describe weapon-like objects, or we could add methods to the common
ancestor of all physical objects and override them in objects describing physical objects
sometimes useable as weapons. Smalltalk promotes this kind of incremental development.

2 What Smalltalk Provides

2.1 Self-Contained Environments for Data and Code

Using Smalltalk normally involves the use of a standard Smalltalk environment, which is a
self-contained “image” containing a pre-defined class hierarchy along with whatever classes
and data have been defined (or modified) and saved in the image by a user. An image
behaves the same way on whatever host system is running it (typically by virtue of being
interpreted by a virtual machine on each host platform). The entire image is by default open
to user inspection and modification. Figures 2 and 3 show current (2014) and historical
(early 1980s) screenshots of such environments.

2.2 That Sounds Familiar!

The “container environment for data and code” concept recurs throughout computing:

• My computer is a container for data and code which allows me to manipulate it;

• PDF documents contain typesetting instructions for text and other media, and may
contain code to provide additional interactivity and functionality (via JavaScript);

• Microsoft Word documents contain data (text and formatting), and provide mecha-
nisms for code to provide additional interactivity and functionality (via Visual Basic
and COM add-ins);

• Modern web pages contain data (most often HTML) and code to provide additional
interactivity and functionality (most often via JavaScript);

• Computer programs themselves are containers for code and data.

In all of these cases, a self-contained unit of information (code and data) can be transmit-
ted from one host environment to another and reproduced. The receiving host environment
contains a base level of functionality to interpret and display the data, and it can run the
code which was included to provide additional functionality.

watters 5

Object subc l a s s : #Creature
instanceVariableNames : ’ he ldObjects ’ .

hasPointyObject
ˆ he ldObjects conta in s : [: x | x isKindOf : PointyObject]

i sHo s t i l eTo : anObject
ˆ(anObject isKindOf : Creature)

and : ((anObject isKindOf : s e l f s p e c i e s)
i fTrue : [fa l se]
i f F a l s e : [s e l f hasPointyObject])

ho ldObjects : aCo l l e c t i on
he ldObjects addAll : aCo l l e c t i on

shouldRunAwayFrom : anObject
ˆ(anObject isKindOf : Creature)

and : (anObject i sHo s t i l eTo : s e l f)

Object subc l a s s : #PointyObject
instanceVariableNames : ’ ’ .

PointyObject subc l a s s : #MammothTusk
instanceVariableNames : ’ ’ .

PointyObject subc l a s s : #SharpSpear
instanceVariableNames : ’ ’ .

Creature subc l a s s : #Human
instanceVariableNames : ’ ’ .

Creature subc l a s s : #WoolyMammoth
instanceVariableNames : ’ ’ .

i n i t i a l i z e
super i n i t i a l i z e .
s e l f holdObjects : (Bag with : MammothTusk new with : MammothTusk new)

Figure 1: A shorthand representation of Squeak Smalltalk code for the Wooly Mammoth
model. The actual class and method definitions were created in a graphical editor inside
the Squeak Smalltalk environment.

watters 6

Figure 2: Examining the Squeak Smalltalk programming environment, a descendant of
the original Smalltalk-80 environment. Everything is an object and all classes are open to
inspection and modification. Image: MTW

watters 7

Figure 3: An original Smalltalk-80 environment running on a Xerox workstation in the early
1980s. Image: Computer History Museum

watters 8

3 A Series of Unfortunate Events

3.1 Could Smalltalk Have Been a Successful Operating System?

According to Alan Kay, the original designer of Smalltalk, Steve Jobs tried to buy and/or
otherwise obtain the Smalltalk technology from Xerox upon seeing a demonstration in
1979.1 He was unable to do so. Had he succeeded, perhaps the original Apple Lisa and/or
Macintosh would have been specialized machines for running Smalltalk environments instead
of mere echoes of Xerox and Smalltalk concepts.

Still, computer operating systems come and go, and most users don’t need (and shouldn’t
have) total control over how their system operates. An operating system based on Smalltalk
and its philosophy would likely have been too “open” to be practical for most users (many
of whom want to treat a computer merely as a tool for consumption which always behaves
the same way, like a toaster or television).

3.2 A Format for “Live Documents”?

Apple began selling a Smalltalk-80 environment in 1984.2 In 1987 it released HyperCard,
a very popular “live document” environment with a number of similarities to Smalltalk
(also based on partly self-contained “images” hosting data and code involving “messages to
objects”), but without Smalltalk’s extensive class hierarchy or simple syntax (HyperCard
used interpreted English-like sentences in a bid to be more user-friendly).

If HyperCard had been developed as an extension to the base Smalltalk environment,
perhaps entire generations of computer users would have come to appreciate Smalltalk’s
openness, power, and utility. Instead, HyperCard was killed off and largely forgotten, never
to be faithfully recreated.

3.3 A Language for the Web?

Initial drawbacks of early Smalltalk environments included limited performance and rela-
tively high memory usage.3

A startup company working on improving Smalltalk’s performance had made some ma-
jor progress by 1996, creating what may still be the fastest implementation of Smalltalk
(known as Strongtalk).4 Unfortunately, they were acqui-hired by Sun in 1997 and put
to work improving Java instead.5 One of the developers (Lars Bak) went on to lead the
development of the V8 engine for JavaScript.

If the Strongtalk project had continued, a rich language (Smalltalk with optional type
declarations) and environment which was speed-competitive with the dynamic languages
of its era would have emerged and perhaps seen widespread use as a serious competitor to
Java. What if “Smalltalklets” had been prevalent instead of Java applets?

1Google cache of http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk V.html on
2014-03-07.

2Google cache of http://www.smalltalk.org/smalltalk/history.html on 2014-03-07.
3http://en.wikipedia.org/wiki/Smalltalk on 2014-03-07.
4http://www.strongtalk.org/history.html on 2014-03-07.
5http://en.wikipedia.org/wiki/Strongtalk on 2014-03-07.

watters 9

4 What Might Have Been

With its rich programming and data modeling environment (mapping naturally to the way
we deal with information in the real world), and its (typically) image-based deployment
mechanism providing identical behavior on multiple platforms, Smalltalk rightfully should
have become the defacto standard for exchanging universal “documents with behavior”.

Using the same concept of a class hierarchy, there could be multiple “well-known base
environments” which inherit behavior from ancestors (all the way to an appropriate root
environment, such as an ANSI standard). There could be user-extensible standard envi-
ronments for things like word processing documents, spreadsheets, and hypermedia (web
pages); each of these would be defined by their differences from a suitable ancestor environ-
ment. Similar kinds of documents could share common behavior, greatly enhancing options
for code reuse and interactivity among different kinds of data.

Under this model, most documents could be packaged as “Smalltalk image deltas”,
containing only a reference to a well-known environment and the necessary code changes
and data specific to the document.

The concept of “file types” is today an approximation of this kind of universal system:
a file’s type is a reference to a “well-known environment” (a program implementing the
format), but each file type has its own method (possibly none) of representing “additional
behavior” to be made available to the user accessing the document represented by the file.

A free, widely available, and performant implementation of Smalltalk with a well thought-
out class hierarchy would have provided a compelling foundation upon which such a “uni-
versal document” system might have been built. But it never came to be.

